Главное меню

Карта сайта
Главная
Курсовые работы
Отчеты по практикам
Лабораторные работы
Методические пособия
Рефераты
Дипломы
Лекции



Определения влажности нитей

Определение характеристик без сравнения с соответствующими нормативами не дает исчерпывающего ответа о точности измерений. Для этого результаты расчетов сравнивают с нормативами повторяемости и воспроизводимости.

В нашем случае n'1=n'2=2, следовательно, пределы повторяемости во всех лабораториях, рассчитанные по формуле (17), будут одинаковы и рав­ны для данного уровня

.

Рассчитанное значение предела повторяемости для установления точ­ности измерений, проводимых на третьем уровне испытаний, мы сравниваем с разностями средних арифметических значений первых групп опытов и вторых групп , которые приведены таблице 3.1.3.

Как видно из таблицы 3.1.3, все разности средних значений первых и вторых групп измерений не превышают значения рассчитанной величины предела повторяемости, следовательно, можно сделать вывод о достаточ­ной точности проводимых измерений лабораториями на третьем уровне испытаний при доверительной вероятности 0,95.

Теперь рассчитаем предел воспроизводимости для всех лабораторий третьего уровня. В нашем случае n1=n2=4, поэтому пределы воспроизводимости во всех лабораториях, рассчитанные по формуле (18), будут одинаковы и равны для данного уровня

.

Рассчитанное значение предела воспроизводимости сравниваем с разностью максимального и минимального средних арифметических значений базовых элементов на третьем уровне испытаний .

Так как рассчитанная величина R3=0,24 превышает разницу то, можно сделать вывод о достаточной точности проводимых измерений всеми восьми лабораториями на третьем уровне при доверительной ве­роятности 0,95.

Произведем аналогичные расчеты относительно четвертого уровня.

Для четвертого уровня вычисления начинается с определения средних значений в базовых элементах по формуле (9), затем находят, по формуле (10), величину рассеяния (разброса) в базовых элементах, они уже рассчитаны в п.3.1.

Далее, исходя из данных таблицы 3.1.4, находим общее среднее значение для уровня 4 по формуле (11)

После находим дисперсию повторяемости по формуле (12) и межлабораторную дисперсию по формуле (13)

,

Так как при расчетах используется достаточно ограниченная выборка, то вычисленная величина приняла отрицательное значение, и мы её приравниваем к нулю.

Тогда дисперсия воспроизводимости можем найти по формуле (16)

Определение характеристик без сравнения с соответствующими нормативами не дает исчерпывающего ответа о точности измерений. Для этого результаты расчетов сравнивают с нормативами повторяемости и воспроизводимости.

В нашем случае n'1=n'2=2, следовательно, пределы повторяемости во всех лабораториях, рассчитанные по формуле (17), будут одинаковы и рав­ны для данного уровня

.

Рассчитанное значение предела повторяемости для установления точ­ности измерений, проводимых на четвертом уровне испытаний, мы сравнива­ем с разностями средних арифметических значений первых групп опытов и вторых групп , которые приведены таблиц 3.1.4.

Как видно из таблицы 3.1.4, все разности средних значений первых и вторых групп измерений не превышают значения рассчитанной величины предела повторяемости, следовательно, можно сделать вывод о достаточ­ной точности проводимых измерений лабораториями на четвертом уровне испытаний при доверительной вероятности 0,95.

Теперь рассчитаем предел воспроизводимости для всех лабораторий четвертого уровня. В нашем случае n1=n2=4, поэтому пределы воспроизводимости во всех лабораториях, рассчитанные по формуле (18), будут одинаковы и равны для данного уровня

Рассчитанное значение предела воспроизводимости сравниваем с разностью максимального и минимального средних арифметических значений базовых элементов на четвертом уровне испытаний .

Так как рассчитанная величина R4=0,26 превышает разницу то, можно сделать вывод о достаточной точности проводимых измерений всеми восьми лабораториями на четвертом уровне при доверительной ве­роятности 0,95.

Произведем аналогичные расчеты относительно пятого уровня.

Для пятого уровня вычисления начинается с определения средних значений в базовых элементах по формуле (9), затем находят, по формуле (10), величину рассеяния (разброса) в базовых элементах, они уже рассчитаны в п.3.1.

Далее, исходя из данных таблицы 3.1.6, находим общее среднее значение для уровня 5 по формуле (11)

После находим дисперсию повторяемости по формуле (12) и межлабораторную дисперсию по формуле (13)

,

Так как при расчетах используется достаточно ограниченная выборка, то вычисленная величина приняла отрицательное значение, и мы её приравниваем к нулю.

Тогда дисперсия воспроизводимости можем найти по формуле (16)

Определение характеристик без сравнения с соответствующими нормативами не дает исчерпывающего ответа о точности измерений. Для этого результаты расчетов сравнивают с нормативами повторяемости и воспроизводимости.

В нашем случае n'1=n'2=2, следовательно, пределы повторяемости во всех лабораториях, рассчитанные по формуле (17), будут одинаковы и рав­ны для данного уровня

.

Рассчитанное значение предела повторяемости для установления точ­ности измерений, проводимых на пятом уровне испытаний, мы сравнива­ем с разностями средних арифметических значений первых групп опытов , которые приведены таблиц 3.1.6.

Как видно из таблицы 3.1.6, все разности средних значений первых и вторых групп измерений не превышают значения рассчитанной величины предела повторяемости, следовательно, можно сделать вывод о достаточ­ной точности проводимых измерений лабораториями на пятом уровне испытаний при доверительной вероятности 0,95.

Теперь рассчитаем предел воспроизводимости для всех лабораторий пятого уровня. В нашем случае n1=n2=4, поэтому пределы воспроизводимости во всех лабораториях, рассчитанные по формуле (18), будут одинаковы и равны для данного уровня

.

Рассчитанное значение предела воспроизводимости сравниваем с разностью максимального и минимального средних арифметических значений базовых элементов на пятом уровне испытаний .

Так как рассчитанная величина R5=0,24 превышает разницу то, можно сделать вывод о достаточной точности проводимых измерений всеми семи лабораториями на пятом уровне при доверительной ве­роятности 0,95.