Главное меню

Карта сайта
Главная
Курсовые работы
Отчеты по практикам
Лабораторные работы
Методические пособия
Рефераты
Дипломы
Лекции



Определения влажности нитей

Расчет оценок прецизионности и средних значений

Для первого уровня вычисления начинается с определения средних значений в базовых элементах по формуле (9), затем находят, по формуле (10), величину рассеяния (разброса) в базовых элементах, они уже рассчитаны в п.3.1.

Далее, исходя из данных таблицы 3.1.1, находим общее среднее значение для уровня 1 по формуле (11)

После находим дисперсию повторяемости по формуле (12) и межлабораторную дисперсию по формуле (13)

,

,

Так как при расчетах используется достаточно ограниченная выборка, то вычисленная величина приняла отрицательное значение, и мы её приравниваем к нулю.

Тогда дисперсия воспроизводимости можем найти по формуле (16)

Определение характеристик без сравнения с соответствующими нормативами не дает исчерпывающего ответа о точности измерений. Для этого результаты расчетов сравнивают с нормативами повторяемости и воспроизводимости.

В нашем случае n'1=n'2=2, следовательно, пределы повторяемости во всех лабораториях, рассчитанные по формуле (17), будут одинаковы и рав­ны для данного уровня

Рассчитанное значение предела повторяемости для установления точ­ности измерений, проводимых на первом уровне испытаний, мы сравнива­ем с разностями средних арифметических значений первых групп опытов и вторых групп , которые приведены таблице 3.1.1.

Как видно из таблицы 3.1.1, все разности средних значений первых и вторых групп измерений не превышают значения рассчитанной величины предела повторяемости, следовательно, можно сделать вывод о достаточ­ной точности проводимых измерений лабораториями на первом уровне испытаний при доверительной вероятности 0,95.

Теперь рассчитаем предел воспроизводимости для всех лабораторий первого уровня. В нашем случае n1=n2=4, поэтому пределы воспроизводимости во всех лабораториях, рассчитанные по формуле (18), будут одинаковы и равны для данного уровня

Рассчитанное значение предела воспроизводимости сравниваем с разностью максимального и минимального средних арифметических значений базовых элементов на первом уровне испытаний .

Так как рассчитанная величина R1=0,24 превышает разницу то, можно сделать вывод о достаточной точности проводимых измерений всеми восьми лабораториями на первом уровне при доверительной ве­роятности 0,95.

Произведем аналогичные расчеты относительно второго уровня.

Для второго уровня вычисления начинается с определения средних значений в базовых элементах по формуле (9), затем находят, по формуле (10), величину рассеяния (разброса) в базовых элементах, они уже рассчитаны в п.3.1.

Далее, исходя из данных таблицы 3.1.2, находим общее среднее значение для уровня 2 по формуле (11)

После находим дисперсию повторяемости по формуле (12) и межлабораторную дисперсию по формуле (13)

,

,

Так как при расчетах используется достаточно ограниченная выборка, то вычисленная величина приняла отрицательное значение, и мы её приравниваем к нулю.

Тогда дисперсия воспроизводимости можем найти по формуле (14)

Определение характеристик без сравнения с соответствующими нормативами не дает исчерпывающего ответа о точности измерений. Для этого результаты расчетов сравнивают с нормативами повторяемости и воспроизводимости.

В нашем случае n'1=n'2=2, следовательно пределы повторяемости во всех лабораториях, рассчитанные по формуле (17), будут одинаковы и рав­ны для данного уровня

.

Рассчитанное значение предела повторяемости для установления точности измерений, проводимых на втором уровне испытаний, мы сравнива­ем с разностями средних арифметических значений первых групп опытов и вторых групп , которые приведены таблице 3.1.2.

Как видно из таблицы 3.1.2, все разности средних значений первых и вторых групп измерений не превышают значения рассчитанной величины предела повторяемости, следовательно, можно сделать вывод о достаточ­ной точности проводимых измерений лабораториями на втором уровне испытаний при доверительной вероятности 0,95.

Теперь рассчитаем предел воспроизводимости для всех лабораторий второго уровня. В нашем случае n1=n2=4, поэтому пределы воспроизводимости во всех лабораториях, рассчитанные по формуле (18), будут одинаковы и равны для данного уровня

.

Рассчитанное значение предела воспроизводимости сравниваем с разностью максимального и минимального средних арифметических значений базовых элементов на втором уровне испытаний .

Так как рассчитанная величина R2=0,21 меньше разницы то, можно сделать вывод о недостаточной точности проводимых измерений всеми восьми лабораториями на втором уровне при доверительной ве­роятности 0,95.

Произведем аналогичные расчеты относительно третьего уровня.

Для третьего уровня вычисления начинается с определения средних значений в базовых элементах по формуле (9), затем находят, по формуле (10), величину рассеяния (разброса) в базовых элементах, они уже рассчитаны в п.3.1.

Далее, исходя из данных таблицы 3.1.3, находим общее среднее значение для уровня 3 по формуле (11)

После находим дисперсию повторяемости по формуле (12) и межлабораторную дисперсию по формуле (13)

,

,

Так как при расчетах используется достаточно ограниченная выборка, то вычисленная величина приняла отрицательное значение, и мы её приравниваем к нулю.

Тогда дисперсия воспроизводимости можем найти по формуле (16)